How do you perform the operation in trigonometric form (0.45(cos(310)+isin(310)))(0.6(cos(200)+isin(200)))?

1 Answer
Jan 5, 2017

(0.45(cos310+isin310))(0.6(cos200+isin200))=0.27(32+12i)

Explanation:

Two complex numbers in polar form z1=r1(cosα+isinα) and z2=r2(cosβ+isinβ) can be multiplied as under,

z1z2=r1r2[cosαcosβ+icosαsinβ+isinαcosβ+i2sinαsinβ]

= r1r2[(cosαcosβsinαsinβ)+i(cosαsinβ+sinαcosβ)]

= r1r2[cos(α+β)+isin(α+β)]

Hence (0.45(cos310+isin310))(0.6(cos200+isin200))

= 0.45×0.6(cos(310+200)+isin(310+200))

= 0.27(cos510+isin510)

= 0.27(cos(360+150)+isin(360+150))

= 0.27(cos150+isin150)

= 0.27(32+12i)