How do you perform the operation in trigonometric form (12(cos52+isin52))/(3(cos110+isin110))12(cos52+isin52)3(cos110+isin110)?

2 Answers
Jun 1, 2017

(12(cos52+isin52))/(3(cos110+isin110))=4(cos58-isin58)12(cos52+isin52)3(cos110+isin110)=4(cos58isin58)

Explanation:

(12(cos52+isin52))/(3(cos110+isin110))12(cos52+isin52)3(cos110+isin110)

= (12(cos52+isin52)(cos110-isin110))/(3(cos110+isin110)(cos110-isin110))12(cos52+isin52)(cos110isin110)3(cos110+isin110)(cos110isin110)

= (12(cos52cos110+isin52cos110-icos52sin110-i^2sin52sin110))/(3(cos^2 110-i^2sin^2 110))12(cos52cos110+isin52cos110icos52sin110i2sin52sin110)3(cos2110i2sin2110)

= (12(cos52cos110+sin52sin110+i(sin52cos110-cos52sin110)))/(3(cos^2 110+sin^2 110))12(cos52cos110+sin52sin110+i(sin52cos110cos52sin110))3(cos2110+sin2110)

= (12(cos(52-110)+isin(52-110)))/(3(cos^2 110+sin^2 110))12(cos(52110)+isin(52110))3(cos2110+sin2110)

= (12(cos(-58)+isin(-58)))/312(cos(58)+isin(58))3

= 4(cos58-isin58)

Jun 1, 2017

(12(cos52+isin52))/(3(cos110+isin110))=4(cos58-isin58)

Explanation:

(12(cos52+isin52))/(3(cos110+isin110))=4xx(cos52+isin52)/(cos110+isin110)

cos52+isin52=e^(52i)

cos110+isin110=e^(110i)

therefore4xx(cos52+isin52)/(cos110+isin110)=4xxe^(52i)/e^(110i)=4e^(-58i)

4e^(-58i)=4(cos-58+isin-58)=4(cos58-isin58)