How do you perform the operation in trigonometric form (cos((5pi)/3)+isin((5pi)/3))/(cospi+isinpi)?

1 Answer
Dec 4, 2016

(cos((5pi)/3)+isin((5pi)/3))/(cospi+isinpi)=cos((2pi)/3)+isin((2pi)/3)

= -1/2+isqrt3/2

Explanation:

A complex number in polar form such as (rcostheta+irsintheta) can be written in exponential form as

re^(itheta)

As such cos((5pi)/3)+isin((5pi)/3)=e^((5pi)/3i)

and cospi+isinpi=e^(pii), and hence

(cos((5pi)/3)+isin((5pi)/3))/(cospi+isinpi)=e^((5pi)/3i)/e^(pii)

= e^((5pi)/3i-pii)=e^((2pi)/3i)

= cos((2pi)/3)+isin((2pi)/3)

= -1/2+isqrt3/2