How do you prove cos(2x)=[cos(x)]2[sin(x)]2 and sin(2x)=2sin(x)cos(x) using Euler's Formula: eix=cos(x)+isin(x)?

1 Answer
Aug 25, 2015

Use Euler's Formula to evaluate cos(2x)+isin(2x), then equate real and imaginary parts to get the double angle formulae.

Explanation:

cos(2x)+isin(2x)

=e2ix=(eix)2

=(cos(x)+isin(x))2

=cos2(x)+2isin(x)cos(x)+i2sin2(x)

=(cos2(x)sin2(x))+i(2sin(x)cos(x))

Equate real and imaginary parts to get:

cos(2x)=cos2(x)sin2(x)

sin(2x)=2sin(x)cos(x)