How do you set up an integral for the length of the curve y=sqrtx, 1<=x<=2?
1 Answer
Jul 27, 2017
arc length is:
L = int_1^2 \ sqrt(1+1/(4x)) \ dx
Explanation:
The arc length of a curve
L = int_a^b \ sqrt(1+(dy/dx)^2) \ dx
So for the given function:
y = sqrt(x)
Then differentiating wrt
dy/dx = 1/(2sqrt(x))
So then the arc length is:
L = int_1^2 \ sqrt(1+(1/(2sqrt(x)))^2) \ dx
\ \ = int_1^2 \ sqrt(1+1/(4x)) \ dx
NB:
If we evaluate this integral we get:
L = 1.08306427952 ...