How do you sketch one cycle of y=-cos(1/2x)y=cos(12x)?

1 Answer
Jul 31, 2018

See details and graph

Explanation:

y = - cos ( 1/2 x ) in [ -1, 1 ]y=cos(12x)[1,1]

Amplitude: abs ( - 1 ) = 1|1|=1

Period: (2pi)/(1/2)= 4pi2π12=4π

Zeros ( x-intercepts ): -1/2x = ( 2k +1 ) pi/2,12x=(2k+1)π2,

k = 0, +-1, +-2, +-3,..., giving

x = ( 2 k - 1 ) (2 pi ) = an odd multiple of 2 pi .

Graph for one cycle, x in [ -2 pi, 2 pi ]:
graph{ (y + cos ( x/2 ) )( x - 2pi+0.0001y)(x+2pi+0.0001y)(y^2-1)((x-pi)^2+y^2-0.01)((x+pi)^2+y^2-0.01)=0[-6.3 6.3 -3.15 3.15]}