How do you solve #| 2x+6| +4x< 3#? Algebra Linear Inequalities and Absolute Value Absolute Value Inequalities 1 Answer Cesareo R. Apr 20, 2017 #-11/2 < x < -1/2# Explanation: #abs(2x+6)+4x-3 < 0# or #abs(2x+6)+2(2x+6)-15 < 0# or for #x ne -3# we have #1+2(2x+6)/abs(2x+6)-15/abs(2x+6) < 0# or #1 pm 2 < 15/abs(2x+6)# then #max(-1,3) < 15/abs(2x+6)# or #abs(2x+6) < 15/3=5# and finally #-5 < 2x+6 < 5# with #-11/2 < x < -1/2# Answer link Related questions How do you solve absolute value inequalities? When is a solution "all real numbers" when solving absolute value inequalities? How do you solve #|a+1|\le 4#? How do you solve #|-6t+3|+9 \ge 18#? How do you graph #|7x| \ge 21#? Are all absolute value inequalities going to turn into compound inequalities? How do you solve for x given #|\frac{2x}{7}+9 | > frac{5}{7}#? How do you solve #abs(2x-3)<=4#? How do you solve #abs(2-x)>abs(x+1)#? How do you solve this absolute-value inequality #6abs(2x + 5 )> 66#? See all questions in Absolute Value Inequalities Impact of this question 1267 views around the world You can reuse this answer Creative Commons License