How do you solve abs(3 + 2x)>abs(4 - x)?

1 Answer
Apr 24, 2018

The solution is x in (-oo, -7) uu(1/3, +oo)

Explanation:

This is an inequality with absolute values

|3+2x| >|4-x|

|3+2x| -|4-x| >0

Let f(x)=|3+2x| -|4-x|

{(3+2x>=0),(4-x>=0):}, <=>, {(x>=-3/2),(x<=4):}

The sign chart is as follows :

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaaaaa)-3/2color(white)(aaaaaaaaaaa)4color(white)(aaaaaa)+oo

color(white)(aaaa)3+2xcolor(white)(aaaaa)-color(white)(aaaaaaa)0color(white)(aaaa)+color(white)(aaaaaaaaa)+

color(white)(aaaa)4-xcolor(white)(aaaaaa)+color(white)(aaaaaaa)#color(white)(aaaaa)+#color(white)(aaaaa)0color(white)(aaa)+

color(white)(aaaa)|3+2x|color(white)(aaaaa)-3-2xcolor(white)(aa)0color(white)(aaa)3+2xcolor(white)(aaaaaa)3+2x

color(white)(aaaa)|4-x|color(white)(aaaaaaaa)4-xcolor(white)(aaa)#color(white)(aaaa)4-x#color(white)(aaa)0color(white)(aa)-4+x

In the interval (-oo, -3/2),

f(x)=-3-2x-4+x=-7-x

f(x)>0, =>, -7-x>0, =>, x<-7

In the interval [-3/2, 4],

f(x)=3+2x-4+x=-1+3x

f(x)>0, =>, -1+3x>0, x>1/3

In the interval ( 4, +oo),

f(x)=3+2x+4-x=7+x

f(x)>0, =>, 7+x>0, =>, x<-7

This result is not valid since x !in (4, +oo)

The solution is

x in (-oo, -7) uu(1/3, +oo)