This is an inequality with absolute values
|3+2x| >|4-x|
|3+2x| -|4-x| >0
Let f(x)=|3+2x| -|4-x|
{(3+2x>=0),(4-x>=0):}, <=>, {(x>=-3/2),(x<=4):}
The sign chart is as follows :
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaaaaa)-3/2color(white)(aaaaaaaaaaa)4color(white)(aaaaaa)+oo
color(white)(aaaa)3+2xcolor(white)(aaaaa)-color(white)(aaaaaaa)0color(white)(aaaa)+color(white)(aaaaaaaaa)+
color(white)(aaaa)4-xcolor(white)(aaaaaa)+color(white)(aaaaaaa)#color(white)(aaaaa)+#color(white)(aaaaa)0color(white)(aaa)+
color(white)(aaaa)|3+2x|color(white)(aaaaa)-3-2xcolor(white)(aa)0color(white)(aaa)3+2xcolor(white)(aaaaaa)3+2x
color(white)(aaaa)|4-x|color(white)(aaaaaaaa)4-xcolor(white)(aaa)#color(white)(aaaa)4-x#color(white)(aaa)0color(white)(aa)-4+x
In the interval (-oo, -3/2),
f(x)=-3-2x-4+x=-7-x
f(x)>0, =>, -7-x>0, =>, x<-7
In the interval [-3/2, 4],
f(x)=3+2x-4+x=-1+3x
f(x)>0, =>, -1+3x>0, x>1/3
In the interval ( 4, +oo),
f(x)=3+2x+4-x=7+x
f(x)>0, =>, 7+x>0, =>, x<-7
This result is not valid since x !in (4, +oo)
The solution is
x in (-oo, -7) uu(1/3, +oo)