How do you solve the quadratic with complex numbers given 2x^2-6x+7=02x26x+7=0?

1 Answer
Sep 30, 2016

x=3/2+isqrt5/2x=32+i52 or x=3/2-isqrt5/2x=32i52

Explanation:

2x^2-6x+7=02x26x+7=0 - we first ty to make complete square as in (x+a)^2(x+a)2

2x^2-6x+7=02x26x+7=0

hArrx^2-3x+7/2=0x23x+72=0

or x^2-2xx3/2xx x+(3/2)^2-(3/2)^2+7/2=0x22×32×x+(32)2(32)2+72=0

or (x-3/2)^2-9/4+14/4=0(x32)294+144=0

or (x-3/2)^2+5/4=0(x32)2+54=0

or (x-3/2)^2-(sqrt5/2xxi)^2=0(x32)2(52×i)2=0

As this is of the form a^2-b^2=(a+b)(a-b)a2b2=(a+b)(ab)

The above is equal to

(x-3/2-isqrt5/2)(x-3/2+isqrt5/2)0(x32i52)(x32+i52)0

Hence x-3/2-isqrt5/2=0x32i52=0 or x-3/2+isqrt5/2=0x32+i52=0

i.e. x=3/2+isqrt5/2x=32+i52 or x=3/2-isqrt5/2x=32i52