2x^2-6x+7=02x2−6x+7=0 - we first ty to make complete square as in (x+a)^2(x+a)2
2x^2-6x+7=02x2−6x+7=0
hArrx^2-3x+7/2=0⇔x2−3x+72=0
or x^2-2xx3/2xx x+(3/2)^2-(3/2)^2+7/2=0x2−2×32×x+(32)2−(32)2+72=0
or (x-3/2)^2-9/4+14/4=0(x−32)2−94+144=0
or (x-3/2)^2+5/4=0(x−32)2+54=0
or (x-3/2)^2-(sqrt5/2xxi)^2=0(x−32)2−(√52×i)2=0
As this is of the form a^2-b^2=(a+b)(a-b)a2−b2=(a+b)(a−b)
The above is equal to
(x-3/2-isqrt5/2)(x-3/2+isqrt5/2)0(x−32−i√52)(x−32+i√52)0
Hence x-3/2-isqrt5/2=0x−32−i√52=0 or x-3/2+isqrt5/2=0x−32+i√52=0
i.e. x=3/2+isqrt5/2x=32+i√52 or x=3/2-isqrt5/2x=32−i√52