How do you solve the quadratic with complex numbers given -x^2+4x-5=0x2+4x5=0?

1 Answer
Sep 10, 2016

Use the quadratic formula. x=2+-ix=2±i

Explanation:

-x^2+4x-5=0x2+4x5=0

Use the quadratic formula

x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

a=-1a=1
b=4b=4
c=-5c=5

x=(-4+-sqrt(4^2-(4*-1*-5)))/(2*-1)x=4±42(415)21

x=(-4+-sqrt(16-20))/-2x=4±16202

x=(-4+-sqrt(-4))/-2x=4±42

x=(-4+-sqrt(4)sqrt(-1))/-2x=4±412

sqrt(-1) = i1=i

x=(-4+-2i)/-2x=4±2i2

Divide both of the terms in the numerator by the denominator.

x=(-4)/-2 +- (2i)/-2x=42±2i2

x=2+-ix=2±i which can also be written as x=2+ix=2+i and x=2-ix=2i