How do you use partial fraction decomposition to decompose the fraction to integrate (x^2+x)/((x+2)(x-1)^2)x2+x(x+2)(x1)2?

1 Answer
Aug 23, 2015

(x^2+x)/((x+2)(x-1)^2) = (2/9)/(x+2) + (7/9)/(x-1) + (2/3)/(x-1)^2 x2+x(x+2)(x1)2=29x+2+79x1+23(x1)2:

Explanation:

(x^2+x)/((x+2)(x-1)^2)x2+x(x+2)(x1)2

We want

A/(x+2) + B/(x-1) + C/(x-1)^2 = (x^2+x)/((x+2)(x-1)^2) Ax+2+Bx1+C(x1)2=x2+x(x+2)(x1)2:

Clear the denominator to get:

A(x^2-2x+1)+B(x^2+x-2)+C(x+2) = x^2+xA(x22x+1)+B(x2+x2)+C(x+2)=x2+x

So we need to solve the system:

A+B=1A+B=1
-2A+B+C=12A+B+C=1
A-2B+2C=0A2B+2C=0

Solve to get:

A = 2/9A=29, " "B = 7/9 B=79, and " "C=2/3 C=23