Factorize the denominator by solving the equation:
3x^2-7x-6 = 03x2−7x−6=0
x = (7+-sqrt(49+72))/6 = (7+-sqrt(121))/6 = (7+-11)/6={(-2/3),(3):}
Then:
3x^2-7x-6 = 3(x+2/3)(x-3) = (3x+2)(x-3)
Apply partial fractions decomposition:
11/(3x^2-7x-6) = A/(3x+2)+B/(x-3)
11/(3x^2-7x-6) = (A(x-3)+B(3x+2))/(3x^2-7x-6)
11 = (A+3B)x - 3A +2B
{(A+3B = 0),(-3A+2B=11):}
{(A=-3),(B=1):}
So:
11/(3x^2-7x-6) = -3/(3x+2)+1/(x-3)
int 11/(3x^2-7x-6)dx = -int (3dx)/(3x+2)+int dx/(x-3)
int 11/(3x^2-7x-6)dx = -int (d(3x+2))/(3x+2)+int (d(x-3))/(x-3)
int 11/(3x^2-7x-6)dx = -ln abs(3x+2)+ln abs(x-3)+C
int 11/(3x^2-7x-6)dx = ln abs((x-3)/(3x+2))+C