How do you use partial fraction decomposition to decompose the fraction to integrate (x^2-x-8)/((x+1)(x^2+5x+6))x2x8(x+1)(x2+5x+6)?

1 Answer
Aug 13, 2015

(x^2-x-8)/((x+1)(x+2)(x+3))= -3/(x+1) + 2/(x+2) + 2/(x+3) x2x8(x+1)(x+2)(x+3)=3x+1+2x+2+2x+3

Explanation:

(x^2-x-8)/((x+1)(x^2+5x+6))x2x8(x+1)(x2+5x+6)

First we need to finish factoring the denominator:

(x^2-x-8)/((x+1)(x+2)(x+3))x2x8(x+1)(x+2)(x+3)

Now we want A, B, "and " CA,B,and C to get:

A/(x+1) + B/(x+2) + C/(x+3) = (x^2-x-8)/((x+1)(x+2)(x+3))Ax+1+Bx+2+Cx+3=x2x8(x+1)(x+2)(x+3)

So we need:

A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2) = x^2-x-8A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)=x2x8

The left side can be rewritten:

Ax^2+5Ax+6A+Bx^2+4Bx+3B+Cx^2+3Cx+2CAx2+5Ax+6A+Bx2+4Bx+3B+Cx2+3Cx+2C

and then:

(A+B+C)x^2 +(5A+4B+3C)x+(6A+3B+2C)=x^2-x-8(A+B+C)x2+(5A+4B+3C)x+(6A+3B+2C)=x2x8

So we need to solve the system:

A+B+C=1A+B+C=1

5A+4B+3C=-15A+4B+3C=1

6A+3B+2C=-86A+3B+2C=8

Multiplying the first equation by -33 and adding to the second. Then the first times -22 and add to the third, gets us:

2A+B=-42A+B=4

4A+B=-104A+B=10

So 2A = -62A=6 and A = -3A=3, which gets us B = 2B=2 and together these give us C=2C=2.

(x^2-x-8)/((x+1)(x+2)(x+3))= -3/(x+1) + 2/(x+2) + 2/(x+3) x2x8(x+1)(x+2)(x+3)=3x+1+2x+2+2x+3