How do you use partial fraction decomposition to decompose the fraction to integrate (x^2-x+2)/(x(x-1)^2)x2x+2x(x1)2?

1 Answer
Jul 27, 2015

(x^2-x+2)/(x(x-1)^2) = 2/x-1/(x-1)+2/(x-1)^2x2x+2x(x1)2=2x1x1+2(x1)2

Explanation:

(x^2-x+2)/(x(x-1)^2) = A/x+B/(x-1)+C/(x-1)^2x2x+2x(x1)2=Ax+Bx1+C(x1)2

Multiply both sides by x(x-1)^2x(x1)2 (or get a common denominator and compare the numerators -- you'll get to the same place, but one approach may be clearer to you)

A(x-1)^2+Bx(x-1)+Cx = x^2-x+2A(x1)2+Bx(x1)+Cx=x2x+2

Ax^2-2Ax+1+Bx^2-Bx+Cx = x^2-x+2Ax22Ax+1+Bx2Bx+Cx=x2x+2

[A+B]x^2 + [-2A-B+C]x +[A] = 1x^2-1x+2[A+B]x2+[2AB+C]x+[A]=1x21x+2

So we get:

A+B = 1A+B=1
-2A+B+C=-12A+B+C=1
A = 2A=2

Eq 1 and 3 get us A=2A=2 and B = -1B=1

Substituting in Eq 2, we get C = 2C=2