How do you use partial fraction decomposition to decompose the fraction to integrate 1/(1+e^x) 11+ex?

1 Answer
Oct 17, 2015

int 1/(1+e^(x))\ dx=x-ln(1+e^(x))+C.

Explanation:

This is not really a partial fraction problem, but instead it's just a trick. Write:

1/(1+e^(x))=(1+e^(x)-e^(x))/(1+e^(x))

=(1+e^(x))/(1+e^(x))-e^(x)/(1+e^(x))=1-e^(x)/(1+e^(x))

This means

int 1/(1+e^(x))\ dx=int (1-e^(x)/(1+e^(x)))\ dx

=x-int e^(x)/(1+e^(x))\ dx.

For this last integral, let u=1+e^(x) so that du=e^(x)\ dx and we get

int e^(x)/(1+e^(x))\ dx=int\ (du)/u=ln|u|+C=ln(1+e^(x))+C (note that 1+e^(x)>0 for all x).

Therefore,

int 1/(1+e^(x))\ dx=x-ln(1+e^(x))+C.