How do you use partial fraction decomposition to decompose the fraction to integrate 2/(x^3-x^2)2x3x2?

1 Answer
Aug 3, 2015

2/(x^3-x^2)= -2/x-2/x^2+2/(x-1)2x3x2=2x2x2+2x1

Explanation:

Factor the denominator:

x^3-x^2 = x^2(x-1)x3x2=x2(x1)

So we need, A, B, " and "CA,B, and C to make:

A/x+B/x^2+C/(x-1) = 2/(x^2(x-1))Ax+Bx2+Cx1=2x2(x1)

(Ax(x-1)+B(x-1)+Cx^2)/(x^2(x-1)) = 2/(x^2(x-1))Ax(x1)+B(x1)+Cx2x2(x1)=2x2(x1)

Ax^2-Ax+Bx-B+Cx^2 = 2Ax2Ax+BxB+Cx2=2

(A+C)x^2 + (-A+B)x +(-B) = 0x^2+0x+2(A+C)x2+(A+B)x+(B)=0x2+0x+2

So

A+C=0A+C=0
-A+B=0A+B=0
-B=2B=2

And we find:

B=-2,B=2, " "A=-2", " A=2, and " "C=2 C=2

2/(x^3-x^2) = -2/x-2/x^2+2/(x-1)2x3x2=2x2x2+2x1