How do you use partial fraction decomposition to decompose the fraction to integrate (-x - 38)/(2x^2 + 9x - 5) −x−382x2+9x−5?
1 Answer
int(-x-38)/(2x^2+9x-5) dx= 3ln|x+5| -7/2ln|2x-1| + c∫−x−382x2+9x−5dx=3ln|x+5|−72ln|2x−1|+c
Explanation:
First we need to factorise the denominator.
To do this we need to find factors of
:. 2x^2+9x-5 = 2x^2 +10x - x -5
:. 2x^2+9x-5 =2x(x+5) - (x+5)
:. 2x^2+9x-5 =(x+5)(2x-1)
Therefore we can write the integrand as follows:
(-x-38)/(2x^2+9x-5) = (-x-38)/((x+5)(2x-1))
And thge partial fraction decomposition will be:
\ \ \ \ \ (-x-38)/(2x^2+9x-5) = A/(x+5) + B/(2x-1)
:. (-x-38)/(2x^2+9x-5) = (A(2x-1)+B(x+5))/((x+5)(2x-1))
:. \ \ \ \ (-x-38) = A(2x-1)+B(x+5)
Subs
And Sub
Hence, the partial fraction decomposition of the integrand is:
(-x-38)/(2x^2+9x-5) = 3/(x+5) -7/(2x-1)
And so;
int(-x-38)/(2x^2+9x-5) dx= int 3/(x+5) -7/(2x-1) dx
And integrating we get:
int(-x-38)/(2x^2+9x-5) dx= 3ln|x+5| -7/2ln|2x-1| + c