How do you use partial fraction decomposition to decompose the fraction to integrate (-x - 38)/(2x^2 + 9x - 5) x382x2+9x5?

1 Answer
Nov 29, 2016

int(-x-38)/(2x^2+9x-5) dx= 3ln|x+5| -7/2ln|2x-1| + cx382x2+9x5dx=3ln|x+5|72ln|2x1|+c

Explanation:

First we need to factorise the denominator.

To do this we need to find factors of -1010 (coefficient of x^2 xxx2× coefficient of constant= 2 xx -5=2×5) that add up tp 9 (the coefficient of x=9x=9). So the factors we seek are -11 and 1010

:. 2x^2+9x-5 = 2x^2 +10x - x -5
:. 2x^2+9x-5 =2x(x+5) - (x+5)
:. 2x^2+9x-5 =(x+5)(2x-1)

Therefore we can write the integrand as follows:

(-x-38)/(2x^2+9x-5) = (-x-38)/((x+5)(2x-1))

And thge partial fraction decomposition will be:

\ \ \ \ \ (-x-38)/(2x^2+9x-5) = A/(x+5) + B/(2x-1)
:. (-x-38)/(2x^2+9x-5) = (A(2x-1)+B(x+5))/((x+5)(2x-1))
:. \ \ \ \ (-x-38) = A(2x-1)+B(x+5)

Subs x=-5 => -(-5)-38=A(-10-1) + 0
:. -11A=-33 => A=3

And Sub x=1/2=>-1/2-38 = B(1/2+5)
:. 11/2B=-77/2 => B=-7

Hence, the partial fraction decomposition of the integrand is:

(-x-38)/(2x^2+9x-5) = 3/(x+5) -7/(2x-1)

And so;

int(-x-38)/(2x^2+9x-5) dx= int 3/(x+5) -7/(2x-1) dx

And integrating we get:

int(-x-38)/(2x^2+9x-5) dx= 3ln|x+5| -7/2ln|2x-1| + c