How do you use partial fractions to find the integral int (5x^2-12x-12)/(x^3-4x)dx?

1 Answer
Nov 4, 2017

int ((5x^2-12x-12)*dx)/(x^3-4x)=4Ln(x+2)+3Lnx-2Ln(x-2)+C

Explanation:

(5x^2-12x-12)/(x^3-4x)

=(5x^2-12x-12)/[x*(x+2)*(x-2)]

=A/(x+2)+B/x+C/(x-2)

After expanding denominator,

A*x*(x-2)+B*(x+2)*(x-2)+C*x*(x+2)=5x^2-12x-12

Set x=-2, 8A=32, so A=4

Set x=0, -4B=-12, so B=3

Set x=2, -8C=-16, so C=-2

Thus,

int ((5x^2-12x-12)*dx)/(x^3-4x)

=int (4dx)/(x+2)+int (3dx)/x-int (2dx)/(x-2)

=4Ln(x+2)+3Lnx-2Ln(x-2)+C