How do you use partial fractions to find the integral 6xx38dx?

1 Answer
Jan 8, 2017

The answer is =ln(x2)12ln(x2+2x+4)+43arctan(x+13)+C

Explanation:

The denominator is

x38=(x2)(x2+2x+4)

Therefore,

6xx38=6x(x2)(x2+2x+4)

=Ax2+Bx+Cx2+2x+4

=A(x2+2x+4)+(Bx+C)(x2)(x2)(x2+2x+4)

So,

6x=A(x2+2x+4)+(Bx+C)(x2)

Let x=2, , 12=12A, , A=1

Let x=0, , 0=4A2C, , C=2

Coefficients of x2, , 0=A+B, , B=1

Therefore,

6xx38=1x2+x+2x2+2x+4

So,

6xdxx38=dxx2(x2)dxx2+2x+4

We integrate separately

dxx2=ln(x2)

(x2)dxx2+2x+4=(x+24)dxx2+2x+4

=(x+2)dxx2+2x+44dxx2+2x+4

Let u=x2+2x+4, , du=(2x+2)dx

Therefore,

(x+2)dxx2+2x+4=12duu=12lnu

=12ln(x2+2x+4)

x2+2x+4=x2+2x+1+3=(x+1)2+3

4dxx2+2x+4=4dx(x+1)2+3

=4dx3((x+13)2+1)

=43dx((x+13)2+1)

Let tanθ=x+13 sec2θdθ=dx3

Therefore,

43dx((x+13)2+1)=433sec2θdθ1+tan2θ

But 1+tan2θ=sec2θ

43dx((x+13)2+1)=43dθ

=43arctan(x+13)