How do you use partial fractions to find the integral int (e^x)/((e^(2x)+1)(e^x-1))dx∫ex(e2x+1)(ex−1)dx?
1 Answer
The integral equals
Explanation:
First of all, the integral can be rewritten as
int e^x/(((e^x)^2 + 1)(e^x- 1)) dx∫ex((ex)2+1)(ex−1)dx
Now let
int e^x/((u^2+ 1)(u - 1)) * (du)/e^x∫ex(u2+1)(u−1)⋅duex
int 1/((u^2 + 1)(u - 1))du∫1(u2+1)(u−1)du
Now use partial fractions.
(Au + B)/(u^2 + 1) + C/(u - 1) = 1/((u^2 + 1)(u - 1))Au+Bu2+1+Cu−1=1(u2+1)(u−1)
(Au + B)(u - 1) + C(u^2+ 1) = 1(Au+B)(u−1)+C(u2+1)=1
Au^2 + Bu - B - Au + Cu^2 + C = 1Au2+Bu−B−Au+Cu2+C=1
(A + C)u^2 + (B - A)u + (C - B) = 1(A+C)u2+(B−A)u+(C−B)=1
We now write a system of equations:
{(A + C = 0), (B - A = 0), (C - B = 1):}
We can simplify to
-A - A = 1
-2A = 1
A = -1/2
This implies that
Our integral becomes:
int(-1/2u - 1/2)/(u^2 + 1) + (1/2)/(u - 1)du
int (-1/2(u + 1))/(u^2 + 1) + 1/(2(u - 1))du
int -1/2(u + 1)/(u^2 + 1) + 1/(2(u - 1)) du
-1/2int (u + 1)/(u^2 + 1)du+ int 1/(2(u - 1))du
-1/2int u/(u^2 + 1) + 1/(u^2 + 1) du + int 1/(2(u - 1))du
-1/2arctanu - 1/2ln(u^2 + 1) + 1/2ln|u - 1| +C
-1/2arctan(e^x) - 1/2ln(e^x + 1) + 1/2ln|e^x - 1| + C
-1/2arctan(e^x) - 1/2(ln(e^x+ 1) - ln|e^x - 1|) + C
-1/2arctan(e^x) - 1/2ln((e^x + 1)/|e^x- 1|)+ C
Practice Exercises
Solve the following integrals using partial fractions. You may use a u-substitution to begin.
a)
b)
Solutions
a)
b)
Hopefully this helps!