How do you use partial fractions to find the integral int (e^x)/((e^(2x)+1)(e^x-1))dxex(e2x+1)(ex1)dx?

1 Answer
Mar 5, 2017

The integral equals -1/2arctan(e^x) - 1/2ln((e^x + 1)/|e^x- 1|)+ C12arctan(ex)12ln(ex+1|ex1|)+C

Explanation:

First of all, the integral can be rewritten as

int e^x/(((e^x)^2 + 1)(e^x- 1)) dxex((ex)2+1)(ex1)dx

Now let u = e^xu=ex. Then du = e^xdxdu=exdx and dx = (du)/e^xdx=duex.

int e^x/((u^2+ 1)(u - 1)) * (du)/e^xex(u2+1)(u1)duex

int 1/((u^2 + 1)(u - 1))du1(u2+1)(u1)du

Now use partial fractions.

(Au + B)/(u^2 + 1) + C/(u - 1) = 1/((u^2 + 1)(u - 1))Au+Bu2+1+Cu1=1(u2+1)(u1)

(Au + B)(u - 1) + C(u^2+ 1) = 1(Au+B)(u1)+C(u2+1)=1

Au^2 + Bu - B - Au + Cu^2 + C = 1Au2+BuBAu+Cu2+C=1

(A + C)u^2 + (B - A)u + (C - B) = 1(A+C)u2+(BA)u+(CB)=1

We now write a system of equations:

{(A + C = 0), (B - A = 0), (C - B = 1):}

We can simplify to C = -A and B = A and substitute into the third equation.

-A - A = 1

-2A = 1

A = -1/2

This implies that C = 1/2 and B = -1/2.

Our integral becomes:

int(-1/2u - 1/2)/(u^2 + 1) + (1/2)/(u - 1)du

int (-1/2(u + 1))/(u^2 + 1) + 1/(2(u - 1))du

int -1/2(u + 1)/(u^2 + 1) + 1/(2(u - 1)) du

-1/2int (u + 1)/(u^2 + 1)du+ int 1/(2(u - 1))du

-1/2int u/(u^2 + 1) + 1/(u^2 + 1) du + int 1/(2(u - 1))du

-1/2arctanu - 1/2ln(u^2 + 1) + 1/2ln|u - 1| +C

-1/2arctan(e^x) - 1/2ln(e^x + 1) + 1/2ln|e^x - 1| + C

-1/2arctan(e^x) - 1/2(ln(e^x+ 1) - ln|e^x - 1|) + C

-1/2arctan(e^x) - 1/2ln((e^x + 1)/|e^x- 1|)+ C

Practice Exercises

Solve the following integrals using partial fractions. You may use a u-substitution to begin.

a) int (4x + 1)/(4x^2 + 12x + 9)dx

b) int sinx/(cosx(sinx - 1))dx

Solutions

a) ln|2x + 3| + 5/(4x + 6) + C
b) 1/4ln|(sinx + 1)/(1 - sinx)| + 1/(2(sinx - 1)) + C

Hopefully this helps!