How do you use partial fractions to find the integral int (sinx)/(cosx(cosx-1))dx∫sinxcosx(cosx−1)dx?
1 Answer
Feb 19, 2017
Explanation:
Let
int sinx/(u(u - 1)) * (du)/(-sinx)∫sinxu(u−1)⋅du−sinx
-int1/(u(u - 1))du−∫1u(u−1)du
Now use partial fractions.
A/u + B/(u - 1) = 1/(u(u - 1))Au+Bu−1=1u(u−1)
A(u -1) + B(u) = 1A(u−1)+B(u)=1
Au - A + Bu = 1Au−A+Bu=1
(A + B)u - A = 1(A+B)u−A=1
Write a system of equations.
{(A + B = 0), (-A = 1):}
Solving, we get
-int 1/(u - 1) - 1/u du
int1/udu - int 1/(u - 1)du
ln|u| - ln|u - 1| + C
ln|cosx| - ln|cosx - 1| + C
ln|(cosx)/(cosx - 1)| +C
Hopefully this helps!