We need
intdx/x=ln(|x|)+C
Let's factorise the denominator
16x^4-1=(4x^2-1)(4x^2+1)=(2x+1)(2x-1)(4x^2+1)
We can perform the decomposition into partial fractions
x/(16x^4-1)=x/((2x+1)(2x-1)(4x^2+1))
=A/(2x+1)+B/(2x-1)+(Cx+D)/(4x^2+1)
=(A(2x-1)(4x^2+1)+B(2x+1)(4x^2+1)+(Cx+D)(2x+1)(2x-1))/((2x+1)(2x-1)(4x^2+))
The denominators are the same, we compare the numerators
x=A(2x-1)(4x^2+1)+B(2x+1)(4x^2+1)+(Cx+D)(2x+1)(2x-1)
Let x=-1/2, =>, -1/2=-4A, =>, A=1/8
Let x=1/2, =>, 1/2=4B, =>, B=1/8
Let x=0, =>, 0=-A+B-D, =>, D=0
Coefficients of x^3,
0=8A+8B+4C, =>, 4C=-2, C=-1/2
Therefore,
x/(16x^4-1)=(1/8)/(2x+1)+(1/8)/(2x-1)+(-1/2x)/(4x^2+1)
int(xdx)/(16x^4-1)=int(1/8dx)/(2x+1)+int(1/8dx)/(2x-1)+int(-1/2xdx)/(4x^2+1)
=1/16ln(|2x+1|)+1/16ln(|2x-1|)-1/16ln(|4x^2+1|)+C