How do you use partial fractions to find the integral int (x^2-1)/(x^3+x)dxx21x3+xdx?

1 Answer
Feb 28, 2017

ln|(x^2 + 1)/x|+ Clnx2+1x+C

Explanation:

Start by factoring the denominator.

x^3 + x = x(x^2 + 1)x3+x=x(x2+1)

Now write the partial fraction decomposition.

(Ax + B)/(x^2 + 1) + C/x = (x^2 - 1)/(x(x^2 + 1))Ax+Bx2+1+Cx=x21x(x2+1)

(Ax + B)x + C(x^2 + 1) = x^2 - 1(Ax+B)x+C(x2+1)=x21

Ax^2 + Bx + Cx^2 + C = x^2 - 1Ax2+Bx+Cx2+C=x21

(A + C)x^2 + Bx + C = x^2 - 1(A+C)x2+Bx+C=x21

We now write a system of equations.

{(A + C = 1), (B = 0), (C = -1):}

Solving, we get A = 2, B = 0, C = -1.

int(2x)/(x^2 + 1) - 1/xdx

int (2x)/(x^2 + 1)dx - int 1/xdx

We now make the substitution u = x^2 + 1. Then du = 2xdx and dx = (du)/(2x).

int (2x)/u * (du)/(2x) - int 1/xdx

int 1/u du - int 1/x dx

ln|u| - ln|x| + C

ln|x^2 + 1| - ln|x| + C

ln|(x^2 + 1)/x|+ C

Hopefully this helps!