How do you use partial fractions to find the integral int (x^2+x+2)/(x^2+2)^2dx?

1 Answer
Mar 4, 2018

The answer is =1/sqrt(2)arctan(x/sqrt2)-1/(2(x^2+2))+C

Explanation:

We need

int(dx)/(1+x^2)=arctanx+C

Perform the decomposition into partial fractions

(x^2+x+2)/(x^2+2)^2=(x^2+2+x)/(x^2+2)^2

=1/(x^2+2)+x/(x^2+2)^2

Therefore,

int((x^2+x+2)dx)/(x^2+2)^2=int(1dx)/(x^2+2)+int(xdx)/(x^2+2)^2

The first integral is

int(1dx)/(x^2+2)=int(dx)/(2((x/sqrt2)^2+1))

=1/2*sqrt2arctan(x/sqrt2)

=1/sqrt(2)arctan(x/sqrt2)

For the second integral

Let u=x^2+2, =>, du=2xdx

Therefore,

int(xdx)/(x^2+2)^2=1/2int(du)/(u^2)

=-1/2*1/u

=-1/2*1/(x^2+2)

Finally,

int((x^2+x+2)dx)/(x^2+2)^2=1/sqrt(2)arctan(x/sqrt2)-1/(2(x^2+2))+C