How do you use partial fractions to find the integral x(2x9)x36x2+12x8dx?

1 Answer
Jan 2, 2017

The answer is =5(x2)2+1x2+2ln(x2)+C

Explanation:

We need

xndx=xn+1n+1+C(x1)

dxx=lnx+C

We start by factorising the denominator

Let f(x)=x36x2+12x8

f(2)=824+248=0

Therefore,

(x2) is a factor

To find the other factors, we do a long division

aaaax36x2+12x8aaaax2

aaaax32x2aaaaaaaaaaaaax24x+4

aaaaa04x2+12x

aaaaaaa4x2+8x

aaaaaaaaa0+4x8

aaaaaaaaaaaaa+4x8

aaaaaaaaaaaaaa+00

Therefore,

x36x2+12x8=(x2)(x24x+4)=(x2)(x2)(x2)

so, we can do the decomposition into partial fractions

x(2x9)x36x2+12x8=x(2x9)(x2)3

=A(x2)3+B(x2)2+Cx2

=A+B(x2)+C(x2)2(x2)3

x(2x9)=A+B(x2)+C(x2)2

Let x=2, , 10=A

Coefficients of x2, , 2=C

Let x=0, , 0=A2B+4C

, 2B=A+4C=10+8=2, , B=1

so,

x(2x9)x36x2+12x8=10(x2)31(x2)2+2x2

Therefore,

x(2x9)dxx36x2+12x8=10dx(x2)3dx(x2)2+2dxx2

=5(x2)2+1x2+2ln(x2)+C