How do you use partial fractions to find the integral #int (x(2x-9))/(x^3-6x^2+12x-8)dx#?

1 Answer
Jan 2, 2017

The answer is #=5/(x-2)^2+1/(x-2)+2ln(∣x-2∣)+ C#

Explanation:

We need

#intx^ndx=x^(n+1)/(n+1)+C (x!=-1)#

#intdx/x=ln∣x∣+C#

We start by factorising the denominator

Let #f(x)=x^3-6x^2+12x-8#

#f(2)=8-24+24-8=0#

Therefore,

#(x-2)# is a factor

To find the other factors, we do a long division

#color(white)(aaaa)##x^3-6x^2+12x-8##color(white)(aaaa)##∣##x-2#

#color(white)(aaaa)##x^3-2x^2##color(white)(aaaaaaaaaaaaa)##∣##x^2-4x+4#

#color(white)(aaaaa)##0-4x^2+12x#

#color(white)(aaaaaaa)##-4x^2+8x#

#color(white)(aaaaaaaaa)##-0+4x-8#

#color(white)(aaaaaaaaaaaaa)##+4x-8#

#color(white)(aaaaaaaaaaaaaa)##+0-0#

Therefore,

#x^3-6x^2+12x-8=(x-2)(x^2-4x+4)=(x-2)(x-2)(x-2)#

so, we can do the decomposition into partial fractions

#(x(2x-9))/(x^3-6x^2+12x-8)=(x(2x-9))/(x-2)^3#

#=A/(x-2)^3+B/(x-2)^2+C/(x-2)#

#=(A+B(x-2)+C(x-2)^2)/(x-2)^3#

#x(2x-9)=A+B(x-2)+C(x-2)^2#

Let #x=2#, #=>#, #-10=A#

Coefficients of #x^2#, #=>#, #2=C#

Let #x=0#, #=>#, #0=A-2B+4C#

#=>#, #2B=A+4C=-10+8=-2#, #=>#, #B=-1#

so,

#(x(2x-9))/(x^3-6x^2+12x-8)=-10/(x-2)^3-1/(x-2)^2+2/(x-2)#

Therefore,

#int(x(2x-9)dx)/(x^3-6x^2+12x-8)=-10intdx/(x-2)^3-intdx/(x-2)^2+2intdx/(x-2)#

#=5/(x-2)^2+1/(x-2)+2ln(∣x-2∣)+ C#