How do you use partial fractions to find the integral int (x^3-x+3)/(x^2+x-2)dx?

1 Answer
Dec 2, 2016

THe answer is =x^2/2-x+ln(∣x-1∣)+ln(∣x+2∣)+C

Explanation:

The denominator is

x^2+x-2=(x-1)(x+2)

But before, let's do a long division

color(white)(aaaa)x^3-x+3color(white)(aaaa)x^2+x-2

color(white)(aaaa)x^3+x^2-2xcolor(white)(aa)x-1

color(white)(aaaa)0-x^2+x+3

color(white)(aaaaaa)-x^2-x+2

color(white)(aaaaaaaa)0+2x+1

So,

(x^3-x+3)/(x^2+x-2)=x-1+(2x+1)/(x^2+x-2)

Now we do the decomposition in partial fractions

(2x+1)/(x^2+x-2)=(2x+1)/((x-1)(x+2))

=A/(x-1)+B/(x+2)=(A(x+2)+B(x-1))/((x-1)(x+2))

so,

2x+1=A(x+2)+B(x-1))

Let x=1, =>, 3=3A, =>, A=1

Let x=-2, =>, -3=-3B, =>, B=1

So,

(x^3-x+3)/(x^2+x-2)=(x-1)+1/(x-1)+1/(x+2)

int((x^3-x+3)dx)/(x^2+x-2)=int(x-1)dx+intdx/(x-1)+intdx/(x+2)

=x^2/2-x+ln(∣x-1∣)+ln(∣x+2∣)+C