The denominator is
x^2+x-2=(x-1)(x+2)
But before, let's do a long division
color(white)(aaaa)x^3-x+3color(white)(aaaa)∣x^2+x-2
color(white)(aaaa)x^3+x^2-2xcolor(white)(aa)∣x-1
color(white)(aaaa)0-x^2+x+3
color(white)(aaaaaa)-x^2-x+2
color(white)(aaaaaaaa)0+2x+1
So,
(x^3-x+3)/(x^2+x-2)=x-1+(2x+1)/(x^2+x-2)
Now we do the decomposition in partial fractions
(2x+1)/(x^2+x-2)=(2x+1)/((x-1)(x+2))
=A/(x-1)+B/(x+2)=(A(x+2)+B(x-1))/((x-1)(x+2))
so,
2x+1=A(x+2)+B(x-1))
Let x=1, =>, 3=3A, =>, A=1
Let x=-2, =>, -3=-3B, =>, B=1
So,
(x^3-x+3)/(x^2+x-2)=(x-1)+1/(x-1)+1/(x+2)
int((x^3-x+3)dx)/(x^2+x-2)=int(x-1)dx+intdx/(x-1)+intdx/(x+2)
=x^2/2-x+ln(∣x-1∣)+ln(∣x+2∣)+C