How do you write (2)-(2isqrt3)(2)(2i3) in trigonometric form?

1 Answer
Aug 26, 2016

4(cos(pi/3)-isin(pi/3))4(cos(π3)isin(π3))

Explanation:

To convert from color(blue)"complex to trigonometric form"complex to trigonometric form

That is x+yitor(costheta+isintheta)x+yir(cosθ+isinθ)

color(red)(|bar(ul(color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|)))" and " color(red)(|bar(ul(color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|)))

here x = 2 and y=-2sqrt3

rArrr=sqrt(2^2+(2sqrt3)^2)=sqrt(4+12)=sqrt16=4

Now 2-2sqrt3 i is in the 4th quadrant so we must ensure that theta is in the 4th quadrant.

theta=tan^-1((-2sqrt3)/2)=tan^-1(-sqrt3)

=-pi/3" in 4th quadrant"

rArr2-2sqrt3 i=4(cos(-pi/3)+isin(-pi/3))

which can also be expressed as 4(cos(pi/3)-isin(pi/3))

Since color(red)(|bar(ul(color(white)(a/a)color(black)(cos(-theta)=costheta" and " sin(-theta)=-sintheta)color(white)(a/a)|)))