How do you write an equation of a sine function with amplitude 0.5, period 4pi, phase shift pi/6 to the left, vertical displacement 1 unit up?

1 Answer
Jan 2, 2018

y=1/2sin(1/2x+pi/12)+1y=12sin(12x+π12)+1

Explanation:

We can express trig function in the following way:

y=asin(bx+c)+dy=asin(bx+c)+d

Where:

Amplitude = a.

Period =(2pi)/b=2πb. ( 2pi2π is the normal period of sin(x) )

Phase shift =-c/b=cb.

Vertical shift = d=d.

For our example:

a=1/2a=12

Period needs to be (4pi)(4π)

:.

(2pi)/b=4pi=>b=1/2

Phase shift needs to be pi/6

:,

-c/(1/2)=pi/6=>c=-pi/12 ( this is pi/12 for shift to the left )

Vertical shift needs to be 1

d=1

So our equation is:

y=1/2sin(1/2x+pi/12)+1