How do you write the complex number -3+4i3+4i in polar form?

1 Answer
Nov 15, 2016

The polar form is =5(cos126.9º+isin126.9º)

Explanation:

Let z=a+ib a complex number

The polar form is z=r(costheta+isintheta)

r=sqrt(a^2+b^2)

Here, we have z=-3+4i

:.r=sqrt(9+16)=sqrt25=5

z=5(-3/5+(4i)/5)

:.cos theta=-3/5 and sintheta=4/5

So, theta is in the second quadrant

theta=126.9º

z=5(cos126.9º+isin126.9º)