How do you write the complex number in trigonometric form 1+3i1+3i?

1 Answer
Sep 18, 2016

sqrt10(cos(1.249)+isin(1.249))10(cos(1.249)+isin(1.249))

Explanation:

To convert from color(blue)"complex to trigonometric form"complex to trigonometric form

That is x+yitor(costheta+isintheta)x+yir(cosθ+isinθ)

color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|)))

and color(red)(bar(ul(|color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|))) (-pi < theta <= pi)

here x = 1 and y = 3

rArrr=sqrt(1^2+3^2)=sqrt10

Now 1 + 3i is in the 1st quadrant so theta must be in the 1st quadrant.

theta=tan^-1(3)=1.249" rad" larr" in 1st quad."

rArr1+3itosqrt10(cos(1.249)+isin(1.249))