How do you write the complex number in trigonometric form 1+3i1+3i?
1 Answer
Sep 18, 2016
Explanation:
To convert from
color(blue)"complex to trigonometric form"complex to trigonometric form That is
x+yitor(costheta+isintheta)x+yi→r(cosθ+isinθ)
color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|))) and
color(red)(bar(ul(|color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|))) (-pi < theta <= pi) here x = 1 and y = 3
rArrr=sqrt(1^2+3^2)=sqrt10 Now 1 + 3i is in the 1st quadrant so
theta must be in the 1st quadrant.
theta=tan^-1(3)=1.249" rad" larr" in 1st quad."
rArr1+3itosqrt10(cos(1.249)+isin(1.249))