How do you write the complex number in trigonometric form -1+sqrt3i1+3i?

1 Answer
Aug 25, 2016

2(cos((2pi)/3)+isin((2pi)/3))2(cos(2π3)+isin(2π3))

Explanation:

To convert from color(blue)"complex to trigonometric form"complex to trigonometric form

That is x+yitor(costheta+isintheta)x+yir(cosθ+isinθ)

color(orange)"Reminder"Reminder

color(red)(|bar(ul(color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|)))" and " color(red)(|bar(ul(color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|)))

here x = - 1 and y =sqrt3

rArrr=sqrt((-1)^2+(sqrt3)^2)=sqrt4=2

Now -1+sqrt3 i is in the 2nd quadrant, so we must ensure that theta is in the 2nd quadrant.

theta=tan^-1(-sqrt3)=-pi/3" in 4th quadrant"

rArrtheta=(pi-pi/3)=(2pi)/3" in 2nd quadrant"

rArr-1+sqrt3i=2(cos((2pi)/3)+isin((2pi)/3))