How do you write the complex number in trigonometric form -1+sqrt3i−1+√3i?
1 Answer
Aug 25, 2016
Explanation:
To convert from
color(blue)"complex to trigonometric form"complex to trigonometric form That is
x+yitor(costheta+isintheta)x+yi→r(cosθ+isinθ)
color(orange)"Reminder"Reminder
color(red)(|bar(ul(color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|)))" and " color(red)(|bar(ul(color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|))) here x = - 1 and y
=sqrt3
rArrr=sqrt((-1)^2+(sqrt3)^2)=sqrt4=2 Now
-1+sqrt3 i is in the 2nd quadrant, so we must ensure thattheta is in the 2nd quadrant.
theta=tan^-1(-sqrt3)=-pi/3" in 4th quadrant"
rArrtheta=(pi-pi/3)=(2pi)/3" in 2nd quadrant"
rArr-1+sqrt3i=2(cos((2pi)/3)+isin((2pi)/3))