How do you write the complex number in trigonometric form 3-i?

1 Answer
Feb 18, 2017

The answer is =sqrt10(cos(-18.4º)+isin(-18.4º))

Explanation:

The trigonometric form of a complex number

z=a+ib

is

z=r(cos theta + i sin theta)

rcostheta=a

rsintheta=b

r^2=a^2+b^2=|z|^2

Here, we have

z=3-i

r=|z|=sqrt(9+1)=sqrt10

z=sqrt10(3/sqrt10-i/sqrt10)

costheta=3/sqrt10

sin theta=-1/sqrt10

So, we are in the fourth quadrant

theta=-18.4º

z=sqrt10(cos(-18.4º)+isin(-18.4º))