How do you write the complex number in trigonometric form 3+sqrt3i3+3i?

1 Answer
Oct 17, 2016

=2sqrt3(cos(pi/6)+sin(pi/6))=23(cos(π6)+sin(π6))

Explanation:

let z=3+isqrt3z=3+i3
We have to calculate the modulus ∣z∣=sqrt(3^2+(sqrt3)^2)=sqrt(9+3)=sqrt12=2sqrt3z=32+(3)2=9+3=12=23
Now we have to divide z by ∣z∣
z/(∣z∣)zz=3/(2sqrt3)+isqrt3/(2sqrt3)=sqrt3/2+i/2323+i323=32+i2
So z=2sqrt3(sqrt3/2+i/2)z=23(32+i2)
Now you compare this to
z=r(costheta+isintheta )z=r(cosθ+isinθ)
You can see that
costheta=sqrt3/2cosθ=32
and sintheta=1/2sinθ=12
As the signs are positive, the results is in the first quadrant
theta=30º orpi/6
So the anwer is z=2sqrt3(cos(pi/6)+sin(pi/6))