How do you write the complex number in trigonometric form -4+4i4+4i?

1 Answer
Nov 26, 2016

The answer is =4sqrt2(cos((3pi)/4)+isin((3pi)/4))=42(cos(3π4)+isin(3π4))

Explanation:

Let z=a+ibz=a+ib be a complex number.

To convert to trigonometric form

z=r(costheta+isintheta)z=r(cosθ+isinθ)

We calculate the modulus, ∥z∥=sqrt(a^2+b^2)z=a2+b2

z=-4+4iz=4+4i

∥z∥=sqrt(16+16)=sqrt32=4sqrt2z=16+16=32=42

z=4sqrt2(-4/(4sqrt2)+(4i)/(4sqrt2))z=42(442+4i42)

=4sqrt2(-1/sqrt2+i/sqrt2)=42(12+i2)

So, r=4sqrt2r=42

costheta=-1/sqrt2cosθ=12

sintheta=1/sqrt2sinθ=12

We are in the second quadrant

theta=(3pi)/4θ=3π4

z=4sqrt2(cos((3pi)/4)+isin((3pi)/4))z=42(cos(3π4)+isin(3π4))