How do you write the complex number in trigonometric form 5-12i512i?

1 Answer
Jun 6, 2017

In trigonometric form : 13(cos292.62+isin292.62)13(cos292.62+isin292.62)

Explanation:

Z=a+ib Z=a+ib. Modulus: |Z|=sqrt (a^2+b^2)|Z|=a2+b2; Argument:theta=tan^-1(b/a)θ=tan1(ba) Trigonometrical form : Z =|Z|(costheta+isintheta)Z=|Z|(cosθ+isinθ)

Z=5-12i Z=512i. Modulus |Z|=sqrt(5^2+(-12)^2) =sqrt(25+144)=sqrt169=13|Z|=52+(12)2=25+144=169=13

Argument: tan alpha = 12/5= 2.4 tanα=125=2.4. Z lies on fourth quadrant, alpha =tan^-1(2.4) = 67.38^0 :. theta = 360-67.38=292.62^0 :. Z=13(cos292.62+isin292.62)

In trigonometric form expressed as 13(cos292.62+isin292.62) [Ans]