How do you write the complex number in trigonometric form 5/2(sqrt3-i)52(3i)?

1 Answer
Dec 20, 2016

In trigonometric form expressed as 5(cos330+isin330)5(cos330+isin330)

Explanation:

Z=a+ib Z=a+ib. Modulus: |Z|=sqrt (a^2+b^2)|Z|=a2+b2; Argument:theta=tan^-1(b/a)θ=tan1(ba) Trigonometrical form : Z =|Z|(costheta+isintheta)Z=|Z|(cosθ+isinθ)
Z=5/2(sqrt3-i)= 5/2sqrt3 -5/2i Z=52(3i)=52352i. Modulus |Z|=sqrt(( 5/2sqrt3 )^2+(-5/2)^2) =sqrt(75/4+25/4)=sqrt25=5|Z|=(523)2+(52)2=754+254=25=5
Argument: tan theta= (-cancel(5/2))/(cancel(5/2)sqrt3)= -1/sqrt3 . Z lies on fourth quadrant, so theta =tan^-1(-1/sqrt3) = -pi/6=-30^0 or theta = 360-30=330^0 :. Z=5(cos330+isin330)
In trigonometric form expressed as 5(cos330+isin330)[Ans]