How do you write the complex number in trigonometric form 5+2i5+2i?

1 Answer
Nov 19, 2016

5+2i=sqrt29costheta+isqrt29sintheta5+2i=29cosθ+i29sinθ, where theta=tan^(-1)(2/5)θ=tan1(25)

Explanation:

A number a+iba+ib can be written in trigonometric form as

rcostheta+irsinthetarcosθ+irsinθ.

As rcostheta=arcosθ=a and rsintheta=brsinθ=b, squaring and adding them we get r^2=a^2+b^2r2=a2+b2.

As such for 5+2i5+2i, r=sqrt(5^2+2^2)=sqrt(25+4)=sqrt29r=52+22=25+4=29

and costheta=5/sqrt29cosθ=529 and sintheta=2/sqrt29sinθ=229

i.e. tantheta=2/5tanθ=25 and theta=tan^(-1)(2/5)θ=tan1(25)

Hence in trigonometric form

5+2i=sqrt29costheta+isqrt29sintheta5+2i=29cosθ+i29sinθ, where theta=tan^(-1)(2/5)θ=tan1(25)