How do you write the complex number in trigonometric form -7i7i?

1 Answer
Jan 6, 2018

The answer is =7(cos(-pi/2)+isin(-pi/2))=7e^(-1/2ipi)=7(cos(π2)+isin(π2))=7e12iπ

Explanation:

Any complex number z=a+ibz=a+ib can be represented as

z=r(costheta+isintheta)z=r(cosθ+isinθ)

Where,

r=||z||=sqrt(a^2+b^2)r=||z||=a2+b2

costheta=a/(||z||)cosθ=a||z||

and

sintheta=b/||z||sinθ=b||z||

Here, we have

z=0-7iz=07i

||z||=sqrt((0)^2+(-7)^2)=7||z||=(0)2+(7)2=7

z=7((0/7)+(-7/7)i)z=7((07)+(77)i)

costheta=0cosθ=0 and sin theta=-1sinθ=1

Therefore,

theta =-pi/2θ=π2 , [mod 2pi]

So,

z=7(cos(-pi/2)+isin(-pi/2))