How do you write the complex number in trigonometric form -9-2sqrt10i9210i?

1 Answer
Oct 6, 2017

In trigonometric form expressed as 11(cos3.754+isin3.754)11(cos3.754+isin3.754)

Explanation:

Z=a+ib Z=a+ib. Modulus: |Z|=sqrt (a^2+b^2)|Z|=a2+b2;

Argument:theta=tan^-1(b/a)θ=tan1(ba) Trigonometrical form : Z =|Z|(costheta+isintheta)Z=|Z|(cosθ+isinθ)

Z=-9-2sqrt10 i Z=9210i. Modulus:

|Z|=sqrt((-9)^2+(-2sqrt10)^2) =sqrt(81+40)=sqrt121=11|Z|=(9)2+(210)2=81+40=121=11

Argument: tan alpha= ((|2sqrt10|))/(|9|)= 0.7027 tanα=(210)|9|=0.7027. alpha =tan^-1(0.7027) = 0.61255α=tan1(0.7027)=0.61255

Z lies on third quadrant, so theta =pi+alpha=pi+0.61255 ~~ 3.754θ=π+α=π+0.612553.754

:. Z=11(cos3.754+isin3.754) , argument theta in radians

Z= 11cos3.754+11sin3.754i

In trigonometric form expressed as 11(cos3.754+isin3.754)[Ans]