z_1 *z_2 = (r_1 * r_2) (cos (theta_1 + theta_2) + i sin (theta_1 + theta_2))z1⋅z2=(r1⋅r2)(cos(θ1+θ2)+isin(θ1+θ2))
z_1 = 0 - 2 i, z_2 = 1 + iz1=0−2i,z2=1+i
r_1 = sqrt(0^2 + -2^2) = 2r1=√02+−22=2
theta_1 = tan ^ (-1) (-2/0) = 270 ^@, " IV Quadrant"θ1=tan−1(−20)=270∘, IV Quadrant
r_2 = sqrt(1^2 + (1)^2) = sqrt 2r2=√12+(1)2=√2
theta_2 = tan ^-1 (1/ 1) = 45^@, " I Quadrant"θ2=tan−1(11)=45∘, I Quadrant
z_1 * z_2 = (2*sqrt(2)) (cos (270 + 45) + i sin (270 + 45))z1⋅z2=(2⋅√2)(cos(270+45)+isin(270+45))
color(purple)(-2i * (1 + i) = 2 - 2 i)−2i⋅(1+i)=2−2i