How do you write the following in trigonometric form and perform the operation given -2i(1+i)2i(1+i)?

1 Answer
Jul 9, 2018

color(purple)(-2i * (1 + i) = 2 - 2 i)2i(1+i)=22i

Explanation:

z_1 *z_2 = (r_1 * r_2) (cos (theta_1 + theta_2) + i sin (theta_1 + theta_2))z1z2=(r1r2)(cos(θ1+θ2)+isin(θ1+θ2))

z_1 = 0 - 2 i, z_2 = 1 + iz1=02i,z2=1+i

r_1 = sqrt(0^2 + -2^2) = 2r1=02+22=2

theta_1 = tan ^ (-1) (-2/0) = 270 ^@, " IV Quadrant"θ1=tan1(20)=270, IV Quadrant

r_2 = sqrt(1^2 + (1)^2) = sqrt 2r2=12+(1)2=2

theta_2 = tan ^-1 (1/ 1) = 45^@, " I Quadrant"θ2=tan1(11)=45, I Quadrant

z_1 * z_2 = (2*sqrt(2)) (cos (270 + 45) + i sin (270 + 45))z1z2=(22)(cos(270+45)+isin(270+45))

color(purple)(-2i * (1 + i) = 2 - 2 i)2i(1+i)=22i