How do you write the following in trigonometric form and perform the operation given 3+4i13i?

1 Answer
Nov 13, 2016

z=3423+i(3423+1)=52(cosθ+isinθ)
with θ=arctan(251623+33916)

Explanation:

let's get rid of complex denominator...
z=3+4i1i231+i231+i23=3+i323+i44234
z=3423+i(3423+1) that in trigonometric form is z=|z|(cosθ+isinθ)
|z|=2(3423)2+(3423+1)2
|z|=2916+33223+2716+1+3223=
|z|=236+6416=104=52
the angle is θ=arctan(3423+13423)
θ=arctan(3423+1342334+2334+23)=

θ=arctan(91623+94+34+239163)
θ=arctan(251623+33916)