How do you write the following in trigonometric form and perform the operation given (4i)/(-4+2i)?

1 Answer
Mar 23, 2017

From Cartesian, a + bi, to trig r(cos(theta)+isin(theta)):

r = sqrt(a^2+b^2)
theta = {(tan^-1(b/a);a>0,b>0),(pi/2; a=0,b>0),(pi+tan^-1(b/a),a<0),((3pi)/2;a=0,b<0), (2pi+tan^-1(b/a);a>0,b<0):}

Explanation:

For the numerator, #a = 0, b = 4:

r = sqrt(0^2+4^2)

r = 4
theta = (pi)/2

The trig form of the numerator: 4(cos(pi/2)+isin(pi/2))

For the denominator, #a = -4, b = 2:

r = sqrt((-4)^2+2^2)

r = sqrt(16+4)

r = sqrt(20)

r = 2sqrt(5)

theta = pi + tan(2/-4)

theta ~~ 2.68

The trig form of the numerator: 2sqrt(5)(cos(2.68)+isin(2.68))

To divide you subtract the angle of the denominator from the angle of the numerator:

theta = pi/2-2.68

theta ~~ -1.1

And divide the magnitudes:

r = 4/(2sqrt(5))

r = 2sqrt(5)/5

The trig form is:

2sqrt(5)/5(cos(-1.1)+isin(-1.1))