How do you write the partial fraction decomposition of the rational expression 1/(x^2+x+1) 1x2+x+1?
1 Answer
There is no breakdown into simpler fractions with Real coefficients, but with Complex coefficients we find:
1/(x^2+x+1)= (sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))1x2+x+1=√3i3(x+12−√32i)−√3i3(x+12+√32i)
Explanation:
Note that
The zeros of
1/(x^2+x+1)1x2+x+1
= A/(x-omega^2) + B/(x-omega)=Ax−ω2+Bx−ω
=(A(x-omega)+B(x-omega^2))/(x^2+x+1)=A(x−ω)+B(x−ω2)x2+x+1
=((A+B)x - (Aomega+Bomega^2))/(x^2+x+1)=(A+B)x−(Aω+Bω2)x2+x+1
Equating coefficients:
{ (A+B=0), (Aomega+Bomega^2 = -1) :}
Substituting
Aomega-Aomega^2=-1
Rearranging, we find:
A = 1/(omega^2-omega) = 1/(-sqrt(3)i) = sqrt(3)/3i
So:
1/(x^2+x+1)
= (sqrt(3)i)/(3(x-omega^2))-(sqrt(3)i)/(3(x-omega))
= (sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))