How do you write the partial fraction decomposition of the rational expression 1/(x^2+x+1) 1x2+x+1?

1 Answer
Jul 27, 2016

There is no breakdown into simpler fractions with Real coefficients, but with Complex coefficients we find:

1/(x^2+x+1)= (sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))1x2+x+1=3i3(x+1232i)3i3(x+12+32i)

Explanation:

Note that (x^2+x+1)(x-1) = x^3-1(x2+x+1)(x1)=x31

The zeros of x^2+x+1x2+x+1 are the non-Real Complex cube roots of 11, omegaω and omega^2 = bar(omega)ω2=¯¯ω

omega = -1/2+sqrt(3)/2iω=12+32i is the primitive Complex cube root of 11.

1/(x^2+x+1)1x2+x+1

= A/(x-omega^2) + B/(x-omega)=Axω2+Bxω

=(A(x-omega)+B(x-omega^2))/(x^2+x+1)=A(xω)+B(xω2)x2+x+1

=((A+B)x - (Aomega+Bomega^2))/(x^2+x+1)=(A+B)x(Aω+Bω2)x2+x+1

Equating coefficients:

{ (A+B=0), (Aomega+Bomega^2 = -1) :}

Substituting B=-A in the second of these equations we get:

Aomega-Aomega^2=-1

Rearranging, we find:

A = 1/(omega^2-omega) = 1/(-sqrt(3)i) = sqrt(3)/3i

So:

1/(x^2+x+1)

= (sqrt(3)i)/(3(x-omega^2))-(sqrt(3)i)/(3(x-omega))

= (sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))