How do you write the partial fraction decomposition of the rational expression (-13x+11) / (2x^3 - 2x^2 + x - 1)?

1 Answer

(-13x+11)/(2x^3-2x^2+x-1)=(-2/3)/(x-1)+(4/3x-35/3)/(2x^2+1)

Explanation:

From the given (-13x+11)/(2x^3-2x^2+x-1), we start by getting all the factors of the denominator

I will assume that we already know factoring, ok?

2x^3-2x^2+x-1=(x-1)(2x^2+1)

This is our denominator for the right sides of the equation

Let us set up the equation and the variables A, B

(-13x+11)/(2x^3-2x^2+x-1)=A/(x-1)+(Bx+C)/(2x^2+1)

Simplify using the LCD=(x-1)(2x^2+1)

(-13x+11)/(2x^3-2x^2+x-1)=(A(2x^2+1)+(Bx+C)(x-1))/((x-1)(2x^2+1))

Expand then simplify

(-13x+11)/(2x^3-2x^2+x-1)=(2Ax^2+A+Bx^2-Bx+Cx-C)/((x-1)(2x^2+1))

Rearrange from highest to lowest degree the terms in the numerator at the right side of the equation

(-13x+11)/(2x^3-2x^2+x-1)=(2Ax^2+Bx^2-Bx+Cx+A-C)/((x-1)(2x^2+1))

Let us match the numerical coefficients of the terms of the numerators of the left and right side of the equation

(0*x^2+(-13)x^1+11*x^0)/(2x^3-2x^2+x-1)=((2A+B)x^2+(-B+C)x^1+(A-C)*x^0)/((x-1)(2x^2+1))

The equations are

2A+B=0
-B+C=-13
A-C=11

Simultaneous solution results to

A=-2/3
B=4/3
C=-35/3

Our final answer

(-13x+11)/(2x^3-2x^2+x-1)=(-2/3)/(x-1)+(4/3x-35/3)/(2x^2+1)

God bless....I hope the explanation is useful.