How do you write the partial fraction decomposition of the rational expression 1/((x+7)(x^2+9))?

1 Answer
Dec 14, 2015

1/((x+7)(x^2+9))=(7-x)/(58(x^2+9))+1/(58(x+7))

Explanation:

1/((x+7)(x^2+9))=A/(x+7)+(Bx+C)/(x^2+9)

1=A(x^2+9)+(Bx+C)(x+7)

IF x=-7:

1=58A
A=1/58

IF x=0:

1=9/58+7C
C=7/58

IF x=7:

1=1+14(7B+7/58)
B=-1/58

Plug in these values:

1/((x+7)(x^2+9))=(7-x)/(58(x^2+9))+1/(58(x+7))