How do you write the partial fraction decomposition of the rational expression 1 / ((x^2 + 1) (x^2 +4))?
1 Answer
Dec 16, 2015
Solve to find:
1/((x^2+1)(x^2+4)) = 1/(3(x^2+1)) - 1/(3(x^2+4))
Explanation:
Neither of the quadratics
1/((x^2+1)(x^2+4)) = A/(x^2+1) + B/(x^2+4)
=(A(x^2+4)+B(x^2+1))/((x^2+1)(x^2+4))
=((A+B)x^2+(4A+B))/((x^2+1)(x^2+4))
Equating coefficients we find:
A+B = 0
4A+B = 1
Hence
So:
1/((x^2+1)(x^2+4)) = 1/(3(x^2+1)) - 1/(3(x^2+4))
If we allow Complex coefficients, then we find:
1/(x^2+1) = i/(2(x+i))-i/(2(x-i))
1/(x^2+4) = i/(4(x+2i))-i/(4(x-2i))
Hence:
1/(3(x^2+1)) - 1/(3(x^2+4))
=i/(6(x+i))-i/(6(x-i)) + i/(12(x-2i))-i/(12(x+2i))