How do you write the partial fraction decomposition of the rational expression (2x+1)/(4x^2+12x-7)?

1 Answer
Dec 14, 2016

The answer is =(1/4)/(2x-1)+(3/4)/(2x+7)

Explanation:

Let's factorise the denominator

4x^2+12x-7=(2x-1)(2x+7)

So, the decomposition into partial fractions is

(2x+1)/(4x^2+12x-7)=(2x+1)/((2x-1)(2x+7))

=A/(2x-1)+B/(2x+7)

=(A(2x+7)+B(2x-1))/(4x^2+12x-7)

Therefore,

2x+1=A(2x+7)+B(2x-1)

Let x=1/2, =>, 2=8A, =>, A=1/4

Let x=-7/2, =>, -6=-8B, =>, B=3/4

Therefore,

(2x+1)/(4x^2+12x-7)=(1/4)/(2x-1)+(3/4)/(2x+7)