How do you write the partial fraction decomposition of the rational expression 2 / (x^3 + 1)2x3+1?

1 Answer
Dec 14, 2015

2/(3(x+1))-(2(x-2))/(3(x^2-x+1))23(x+1)2(x2)3(x2x+1)

Explanation:

Factor the denominator as a sum of cubes.

2/((x+1)(x^2-x+1))=A/(x+1)+(Bx+C)/(x^2-x+1)2(x+1)(x2x+1)=Ax+1+Bx+Cx2x+1

2=A(x^2-x+1)+(Bx+C)(x+1)2=A(x2x+1)+(Bx+C)(x+1)

2=Ax^2-Ax+A+Bx^2+Bx+Cx+C2=Ax2Ax+A+Bx2+Bx+Cx+C

2=x^2(A+B)+x(-A+B+C)+1(A+C)2=x2(A+B)+x(A+B+C)+1(A+C)

Determine the following system:
{(A+B=0),(-A+B+C=0),(A+C=2):}

Solve to find that {(A=2/3),(B=-2/3),(C=4/3):}

Therefore,

2/(x^3+1)=2/(3(x+1))-(2(x-2))/(3(x^2-x+1))