How do you write the partial fraction decomposition of the rational expression 2x6(x1)(x2)2?

1 Answer
Apr 9, 2018

4x22(x2)24x1

Explanation:

2x6(x1)(x2)2

We expect the form of the partial fractions to be:

2x6(x1)(x2)2Ax1+B(x2)2+Cx2

Adding RHS

2x6A(x2)2+B(x1)+C(x1)(x2)

Because this is an identity numerators will be equal:

We are looking to find the values of A B and C.

We now set x to values that will eliminate most of the unknowns we are looking for.

2x6A(x2)2+B(x1)+C(x1)(x2)

Setting x=2

2(2)6A((2)2)2+B((2)1)+C((2)1)((2)2)

2B

B=2

Setting x=1

2(1)6A((1)2)2+B((1)1)+C((1)1)((1)2)

4A

A=4

Setting x=0

2(0)6A((0)2)2+B((0)1)+C((0)1)((0)2)

64AB+2C

4AB+2C=6

We already know A and B:

4(4)(2)+2C=6

C=4

So our partial fractions are:

4x22(x2)24x1