How do you write the partial fraction decomposition of the rational expression 3x2+10x5(x+1)2(x2)?

1 Answer

The answer is =4(x+1)2+3x2

Explanation:

Let's do the decomposition into partial fractions

3x2+10x5(x+1)2(x2)=A(x+1)2+Bx+1+Cx2

=A(x2)+B(x+1)(x2)+C(x+1)2(x+1)2(x2)

Therefore,

3x2+10x5=A(x2)+B(x+1)(x2)+C(x+1)2

Let x=1, , 12=3A, , A=4

Ler x=2, , 27=9C, , C=3

Coefficients of x2

3=B+C, , B=3C=0

So,

3x2+10x5(x+1)2(x2)=4(x+1)2+0x+1+3x2